TMC SPECIFICATION NO. S - 713

TITLE: FFR TEST PROCEDURE (F.A.A.)

Page Issue A

FFR TEST PROCEDURE

DATE 8/30/62 SHEET 2 OF 16		TMC SPECIFICATION NO. S - 713	D
NP COMPILED	N.F.	TITLE: FFR TEST PROCEDURE (F.A.A.)	
APPROVED		Page Issue A B	

TABLE OF CONTENTS

	·	
I	PURPOSE	PAGE 3
II	TEST EQUIPMENT REQUIRED	3
III	PROCEDURE FOR MAIN CHASSIS	3
	A. Pre-assembly Test, Power Test	3
	B. Post Assembly Test	4
	C. I.F. Alignment	5
	D. Audio Amplifier	5
	E. B.F.O.	6
	F. B.F.O. Reactance	6
	G. B.F.O. Output	6
	G. B.F.O. Output H. Noise Limiter	6
	I. A.V.C.	6
	J. R.F. Gain	7
IV	R.F. TUNING DRAWERS	7
	A. Pre-alignment Check	7
	B. Alignment I.F. Transformer	8
	C. Alignment Crystal Filter	8
	D. Equipment Set-up	9
	E. H.F.O. Oscillator	9
	F. R.F. Alignment	9
	G. I.F. Rejection	9
	H. Signal to Noise Ratio	10
	I. Sensitivity	10 %]
	J. Image Ratio	10
	K. I. F. Selectivity	10
	L. Reactance Tube Shift	11
	M. H.F.O. Output	12
	N. A.V.C. Check	12
Fig.	1	3
	2 Alignment Chart	13
	3 H.F.O. Reactance Tube Shift	14
	TEST SHEET	1 5
TUN I	NG DRAWER TEST SHEET	16

DATE 8/30/62 TMC SPECIFICATION NO. S - 713 OF 16 SHEET NP TITLE: FFR TEST PROCEDURE (F.A.A.) COMPILED CHECKED Page Issue A APPROVED I. Purpose: To provide the procedure for aligning and testing the Model FFR so as to obtain the best possible performance for a communication receiver. Test Equipment Required: II. Standard Signal Generator, Measurements Model 82 or 65-B. Distortion Analyzer, Barker & Williamson. VTVM (audio type), Ballantine 314. VTVM, (dc type), RCA Voltohmyst or H.P. 410B. D. Hewlett Packard Model 524A. Frequency Counter, Ε. F. 455 Kc crystal. G. 600 ohm 5 watt resistor. Variable DC voltage source, 0 to $+4\frac{1}{2}$ volts. Headset: 15,000 ohm resistor, 10 watt. J. 2,500 ohm 75 watt resistor. Κ. Line cord with insulated alligator clips at one end. T., Oscilloscope Tektronix Mod. 515 or equivalent. Crystal Calibrator Mod. 111-B. N. III. Procedure, FFR Main Chassis: Pre-assembly Test (To be used for trouble shooting.) Power Supply: DANGER HIGH VOLTAGE Insert tubes, 5Y3 GT and OA2 into V-108 and V-109 sockets. Place power unit upside down on a non-conducting work bench. out the two white leads and insulate from chassis. (Locate these leads coming out of grommet hole behind power transformer.) Check that all exposed ends of cable leads are not shorting with each other. Test A - Resistance Test Using V.T. Ohmeter, check resistance at following points and compare with nominal values. NOMINAL VALUE TEST POINT transformer primary, white & grey leads near rectifier tube V-108 2 ohms 540 to 660 ohms R-149 between chassis & terminal 12 of transformer b. 70,000 ohms junction of L-101 and C-149B to gnd. 70.000 ohms pin no. 1 of V-100 to gnd. Test B - DC Voltages Connect the line cord clips to the white & grey transformer primary leads near Rectifier socket V-108, and pull rubber insulation over connection to prevent possible short. Next connect 15,000 ohm resistor between pin 1 of V-109 to gnd. and the 2,500 ohm 75 watt resistor from junction of L-101 and R-148 (5,000 ohms) to gnd. These two resistors will provide sufficient load to simulate receiver loading. R-148 L-101 John V-109 15,000 ohm 2.500 ohm 10 watt 75 watt Fig. 1

DATE 8/30	/62					
SHEET 4	OF 16	TMC SPE	CIFICA	TION NO.	S - 713	H
	4/					Ľ
NP	e/./	TITLE: FFR TEST	PROCEDUI	RE (F.A.A.)		
COMPILED	CHECKED					
		Page Issue A				
APPRO	OVED					
	at fallami.	Plug line cord	into power	er socket and	measure DC	& AC
vortages		ng test points. B- DC Voltages				
		est Point		No	minal Value	
v ₁					5 to 240 Vol	ts
V2			•	+ 15	0 Volts	
		9 or terminal 12	of power		. 	
	former to g				to -65 Volt	
V 4-	4 orown 1ea	ads in cable to	gna.		to+6.8 V fo lead to gnd	
				eacn	lead to gild	•
	Test	B- AC Voltages				
V_5 f	ilament vo	ltage across sho	rt pair	orn leads 6.1	to 6.5V RMS	
. v ₆	11	" lon		' " 6.1	to 6.5V RMS	
V ₇ p	in no 4 of	V-108 to gnd			to 380V RMS	
		V-108 to gnd	_3 94		to 380V RMS	
A		ormer terminals 7 s assembly test(Pr			/ EO 9.24 RUNG	
		Set controls as		gitile it c)		
		n		fully cloc	kwise	
		l Switch				
	· ·	iter Switch				
		n				
		Master Switch		BFO		
		Disconnected AVC line check.	On term	inal board F	101 with ton	m i _
nals 7 &		measure resista				
		te values (AVC swi			comparo wr	0
_		RF Gain counter			120K ohms app	rox.
		AVC Switch in A	VC posit:	ion,Resistanc	e 1.4 meg.	
	3.	Voltage check:				
		(a) Connect li(b) Measure fi		altomos:		
		•		MS across fil	aments	
:				OC from each		grnd.
	Mark William	(c) Measure B+			\$10.00 \$10.00	
	Tube Sock			n Numbers		
	W 100	1	2 5	6 9		
	V-100 V-101		215 215	7 0 7 0		
	V-101 V-102	ı	215 215	70		
•	V-104	t		125		
	V-105		16 250			
	V-106	50				
	V-107		150	<u> </u>	The state of the s	
		Connection Socke)		
·	Pin		tag VDC			
	4		VDC			
1	4 2 5	+6.3	VDC			
		+6.3	VDC			
	2-5	6.3	3 VAC			

OGILVIE PRESS, INC., BROOKLYN 17, N. Y. STOCK NO. 459

DATE 8/30/62			
	16	TMC SPECIFICATION NO. S - 713	
JANUARY OF	113		
NP COMPILED CH	PCKED	TITLE: FFR TEST PROCEDURE (F.A.A.)	
APPROVED		Page Issue A	
C.	T :F	Alignment	
Ŭ.		Alignment of the I.F. channel requires an accurate	э
	source	e. Plug the 455 Kc. crystal in the BFO circuit	
		atic) and set the BFO Master-Slave switch to the	
Xtal position	. Con	nect the equipment as follows:	
		(a) Connect 600 ohm load across Audio Output	,
Terminals;			
		(b) Plug headset into phones jack;(c) Connect the AC-VTVM across Detector Terminal	1
and ground at	rear /		L
and ground at	I Cai	(d) Connect the standard signal generator to pir	า
A2 of Multipl	e Conn	ection Socket.	•
	2.	Set Receiver Controls:	
٠		(a) R.F. Gain fully on; AVC to MANUAL.	
		(b) Noise limiter switch off;	
		(c) Audio Gain fully on;	
	9	(d) B.F.O. switch off.	<u> </u>
cvcles at 30%		Set signal generator to 455 Kc. modulated with 100 nject enough voltage into receiver to produce aud	
signal.	, 		
6	4.	Fune I.F. transformers $T-101$, $T-102$, $T-103$ for max	ĸi-
mum output.			
		Furn B.F.O. switch to ON.	
	6. 1	Remove modulation from 455 Kc. output of signal	
generator.	7.	Tune signal generator until zero beat is obtained	
in FFP and le		nerator frequency set.	
In FFR and It	8.	Turn B.F.O. switch to OFF position.	
	9.	Re-establish 1000 cycle 30% modulation of signal	
generator.			
	10.	Retune I.F. transformers for maximum meter deflec-	tion.
Keep generato	r inpu	t low so as to produce 1 volt A.C. on meter.	
		Adjust C-100 so a signal of 115 microvolts produce	es
1 volt A.C. o	on meter	r, with 47 ohm load on IF out J100.	
, ח	o i buA	Amplifier:	
ъ.		With Audio Gain set to Maximum measure voltage	
across 600 ohu			
		It should be MIN. 34.6 volts or 2 watts.	
		Check operation of Audio Gain control observing	
change of out	put.		

NOTE: Input of 115uv should produce 1.0v ±10% across detector load and 34.6v minimum across 600 ohm output. Readjust C100 to meet these requirements.

8/30/62 DATE TMC SPECIFICATION NO. S - 713 16 SHEET OF D NP TITLE: FFR TEST PROCEDURE (F.A.A.) COMPILED Page Issue A APPROVED Distortion check: Connect distortion meter across 600 ohm out-(a) put resistor; With 2 watts output of FFR the distortion should (b) be less than 10%. Hum level with RF Gain counterclockwise and Audio Gain at maximum read AC - VTVM across 600 ohms. Voltage should be lower than .016V RMS or 34 db below pero.dbm (0.775V.) and 66db below 2 watts. When taking hum measurements, disconnect signal generator. Ε. B.F.O. Turn B.F.O switch ON: 1. Zero beat generator against 455 Kc crystal in FFR; Switch B.F.O. SLAVE-MASTER switch to BFO position; Set BFO pitch control to zero position, capacitor 4. C137 plates in mid-position; (Cover should be placed over oscillator section): Tune BFO coil L103 to obtain zero beat; 5. Measure BFO pitch with audio frequency counter con-6. nected across 600 ohms output load. Pitch should vary +2 Kc. or greater. B.F.O. Reactance Connect an Audio Frequency meter across 600 ohms output resistor. Connect to pins 7 and 8 of E102 a DC voltage source 2. which is variable from zero to +4.5 volts. Leave BFO control voltage set to zero. Tune signal generator to obtain zero beat. Set DC control voltage to +4.5V and observe reading 5. on frequency meter. Set DC control voltage to -4.5V and observe reading 6. on frequency meter. Adjust reactance tube balance control R136 to obtain balanced frequency shifts, approximately +3KC. 8. Recheck Part E, steps 1 to 7. B.F.O. Output Using RF - VTVM, measure RF voltage from BFO output 1. jack J104 on rear of receiver. 2. Should be 1v+10%. Η. Noise Limiter

H. Noise Limiter

1. Operation of Noise Limiter switch should produce a clipping of sine wave output as viewed on scope across 600 ohm output.

I. A.V.C.

- 1. Place DC VTVM on AVC terminal of E101 pin no. 4.
- 2. Place AVC manual switch to AVC.
- 3. Incr ase signal g nerator output and look for a negative defl ction of VTVM.

J. RF Gain

1. Operation of RF gain control should reduce the output of the receiver with the AVC switch on or off.

	IC SPECIFICATI	ON	NO. S 713		
REV: A B C D					
COMPILED:	CHECKED:	APPD:	SHEET 7 OF 16		
TITLE: FFR TEST PROCEDURE (F.A.A.)					

Page Issue A B

I.F. Selectivity

- 1. Connect the standard signal generator thru a variable attenuator to pin A2 of Multiple Connection Socket. Connect counter to generator output.
 - 2. Connect DC-VTVM to detector load of receiver.
 - Set variable attenuator to 66 db.
- 4. Set signal generator to 455KC and inject enough voltage into receiver to produce 3 volts on the DC VTVM.
- 5. Remove 6 db from the variable attenuator, increase the frequency of the signal generator above 455KC and note the frequency at which the detector voltage returns to 3 volts.
- 6. Decrease the frequency of the signal generator below 455 KC, note the frequency at which the detector voltage returns to 3 volts. Subtract the two frequencies to obtain the 6db bandwidth. Should be 5KC minimum.
- 7. Repeat steps 5 and 6 using 60db instead of 6db, to obtain the 60db bandwidth. Should be 25KC minimum.

IV. RF Tuning Drawers

- Pre-alignment check.
 - Insert tuning drawer in FFR receiver chassis and turn power ON.
 - Measure voltage at following points:
- (a) Using AC-VTVM measure all filament voltage at tube socket Should be 6.1 - 6.5 VRMS.
- (b) Using DC-VTVM measure voltage from filament to ground. Should be +6.3 to +6.8V DC.
 - (c) Measure DC plate and screen voltage to ground.

	Drawers 5, 6, 7, 8.	
TUBE	PIN NO.	APPROX. DC VOLTAGE
V(5)00	5	+150
V(5)01	6 5	+ 60 +150
V(5)02	6 5	+ 60 +112
	6	+112
V(5)03	5 6	+ 95 + 125
V(5)04	5 6	+ 60 + 90
2	Drawers 1, 2, 3.	
TUBE	PIN NO.	APPROX. DC VOLTAGE

TUBE	PIN NO.	APPROX. DC VOLTAGE
V(1)00	5	+130
V(1)01	6 5	+ 50 +130
V(1)02	6 5	+ 50 + 240
	6 5	+240 +100
V(1)03	6	+130
V(1)04	5 6	+ 85 + 75

DATE 8/30/62 SHEET 8 OF_	16	TMC SPECIFICATION NO. S - 713
NP COMPILED CHEC	CKED	TITLE: FFR TEST PROCEDURE (F.A.A.)
APPROVED		Page Issue A B
В.	Align	IF Transformer:
		Connect signal generator to J101 HFO IN jack on rea
		chassis.
		Place HFO MASTER-SLAVE switch in EXT. position.
		Tune signal generator to 455 Kcs. and align the IF transformer in tuning drawer according to section
		IIIC-IF alignment, neglecting Part 11.
C.		Crystal Filter Tuning Drawer 1, 2, 3:
	1. 1	Equipment Required:
		(a) Sweep signal generator
	2. I	(b) Oscilloscope Equipment Set-up:
	2. 1	(a) Connect scope vertical plate input to FFR
		detector terminals.
		(b) Connect sweep generator sweep output to scope
		horizontal plates.
		(c) Connect sweep RF output to mixer grid, pin 1
	3. F	of V(1)02.
	3. r	Receiver Controls: (a) RF gain fully ON.
		(b) Noise limiter switch OFF.
		(c) Audio gain - as desired.
		(d) BFO switch OFF.
		(e) MASTER-SLAVE switch on tuning drawer to EXT.
		(f) Bandwidth control to normal.
,	4.	Alignment:
		(a) Set scope horizontal gain fully clockwise wit
		amplifier switch in 1st amplifier position.
		(b) Set sweep generator deviation control to give
		two or three inch scope trace width. (c) Center sweep generator frequency on 455 Kc.
		(c) Center sweep generator frequency on 455 Kc. (d) Set sweep generator output voltage to give a
		vertical trace of approximately 4 inches with
		scope amplifier in its most sensitive position
		Adjust sweep output to prevent receiver over-
		load.
		(e) Tune primary and secondary of T(1)03, top and
		bottom slugs, for an increase of 455 Kc.peak display.
		(f) Set bandwidth control to 1.3 Kc. position.
		(g) Tune slug of L(1)01, filter output tank, for
		a maximum peak. Retune primary and s condary
		slugs of T(1)03.
		(h) Adjust C(1)23 for symmetrical wave from.
		Approximate setting is at mid-position. As
		this trimm r is vari d from maximum to mini- mum capacity using an insulat d scr wedriver,
		a notch should app ar first on on side slope
		disappear and appear on the other side. If
		the p ak incr as s or d cr ases with no appa-
		rent notch, the tun d circuits are not on the
		crystal fr qu ncy. Repeating of T(1)03 and

8/30/62 DATE_ TMC SPECIFICATION NO. S - 713 16 OF SHEET NP TITLE: FFR TEST PROCEDURE (F.A.A.) COMPILED Page Issue A B. APPROVED L(1)01 is necessary. As the Bandwidth Control is reset to its other (i) positions the peak should become narrow r with

- a decrease in amplitude.
- (j) Check Bandwidths using standard signal generator method.
- Equipment Set-Up: D.
 - Connect appropriate attenuator pad to FFR to match signal generator to receiver. (50/70 - 20 DB).
 - Receiver set-up 2.
 - (a) BFO switch to OFF.
 - AVC switch to manual. (b)
 - (c) RF gain fully ON.
 - Audio gain as desired. (d)
 - Noise limiter OFF. (e)
 - HFO MASTER-SLAVE switch to HFO. (f)
- H.F.O. Oscillator: E.
 - Tune signal generator and FFR tuning dial to high frequency end of band. Check RF and HFO Alignm nt Chart (Fig. 2) for correct alignment frequ ncy.
 - Adjust H. F. O. trimmer for correct signal. Check 2. for proper placement of image which should be found by tuning signal generator 910 Kc. above receiv r frequency.
 - At low frequency and of band in use, adjust H. F. O. coil 3. tuning slug.
 - Check for proper placement of image. 4.
 - Again recheck oscillator at high end.
- 6. Connect crystal calibrator to ANT & repeat low & high end alignment & tracking R.F. Alignment
 - With receiver dial tuned to high end of band adjust the three R.F. coil trimmer capacitors for maximum signal on output meter. As each tank is tuned reduce signal voltage to keep output below 1V.

Then tuning mixer, two peaks may be obtained. Cor NOTE: rect peaks found at maximum trimmer capacity setting.

- Tune receiver and generator to low end and tune the three R.F. coil tuning slugs for maximum output.
- Retune both ends adjusting also the R.F. oscillator as the tuning of the mixer section may introduce some pulling on the oscillator frequency.
- Recheck band for alignment and tracking.
- I.F. Rejection G.

With receiv r tuned to high end of band check receiver for sensitivity at 455 Kc. Rej ction should be 60 db or b tter. Band 3 tuning draw r (200 - 400 Kc) must

8/30/62 DATE __OF__16 SHEET 10 NP

TMC SPECIFICATION NO. S - 713

N.T. CHECKED

TITLE: FFR TEST PROCEDURE (F.A.A.)

Page Issue A B

APPROVED

COMPILED

be checked at 400 Kc. with the bottom cover in plac. If rejection is under 60 db., the antenna filter choke coils can be moved closer or further away from the chassis to tune filter.

Η. Signal to Noise Ratio:

- With no signal, measure the noise voltage developed across the 600 ohm load, (Use Ballantine Met r).
- 2. Multiply this voltage by 3.16.
- Tune in a signal and adjust the signal level to 3. obtain an output equal to 3.16 times the noise voltage. The strength of signal is the sensitivity to produce a 10 db signal to noise power ratio. Should be less than 1 uv.
- 4. Enter this figure on the tuning drawer test sh et.

Ι. Sensitivity:

- The output of the signal generator in step H.3 is the sensitivity at 10 db signal to noise p w r ratio. Record data on Tuning Drawer Test Sheet. Should be less than 1 uv.
- Image Ratio: J.
 - Tune the generator to the image frequency and note the sensitivity to produce the same voltag at the detector as in Step H.3.
 - 2. Divide this image sensitivity by the sensitivity reading in Step I.1 to obtain the image ratio.
 - 3. Convert this ratio to db and record on Tuning Drawer Test Sheet. Should be 60 db (50KC - 15MC) and 40db (16MC-32MC).

and the second of the second o

The second secon The contract the contract of t the control of the co

The second of th

Commence of the commence of th

State State of the Control of the Control

The Carting of the Section of the Carting of the Ca

that we have the first that the same of the same Control of the Contro

DATE_8/30/62 SHEET11OF16		TMC SPECIFICATION NO. S-713	D
COMPILED	CHECKED	TITLE: FFR TEST PROCEDURE (F.A.A.)	
APPR	OVED		

L: Reactance Tube Shift:

- 1. Connect a variable DC voltage source +4.5 volts to pin 1 and 2 of El02 terminal board on rear of receiver.
- 2. Use the TMC VOX or other accurate signal generator as signal source where small changes in frequency can be read.
- 3. Turn BFO switch ON.
- 4. Set HFO reactance control voltage to zero.
- 5. Tune signal generator and FFR to midband test frequency.
- 6. Tune for zero beat.
- 7. Set HFO control voltage to +4.5V.
- 8. Retune signal generator to obtain zero beat and note frequency shift.
- 9. Set HFO control voltage to -4.5V.
- 10. Retune signal generator to obtain zero beat and note frequency shift.
- 11. Compare total shift obtained with Fig. 3. If inade-quate, adjust HFO reactance tube balance located in tuning drawer. (C-()23)
- 12. Check HFO shift at both ends of band and adjust as required.
- 13. Enter shift obtained in test sheet.
- 14. Retuen oscillator at both ends of band with reactance voltage zero.

DATE 8/30/62 SHEET 12 of 16		TMC SPECIFICATION NO. S - 713	D
NP COMPILED	CHECKED	TITLE: FFR TEST PROCEDURE (F.A.A.)	
APPROVED		Page Issue A B	

HFO Output:

With a RF - VTVM measure the voltage available at the HFO output jack on the rear of the FFR chassis.

ringen neder van din sols in de sols. Tierringen die sols in de sols in

the contraction of the contracti

- Enter this data on the test sheet.
- Turn HFO MASTER-SLAVE switch to Xtal position.
- Place appropriate crystal in socket on front of tuning drawer.
- 5. Note output voltage on HFO jack.

A.V.C. Check:

- Turn AVC manual switch to AVC and RF GAIN control to full clockwise position.
- Connect Ballantine meter across 600 ohm output and 2. switch to 1 volt scale.
- Adjust signal generator for 1 microvolt out and 3. AUDIO GAIN control for 0 db on the Ballantine meter.
- Check db output at lime of uv. Should remain within 12db. Record data on Tuning Brawer Test Sheet.

O. Overall Selectivity

- Connect the Sig. Gen. thru variable Atten. to antenna input of the receiver. Connect counter to generator output.
- Connect DC VTVM to detector load of the receiver. 2.
- Using any band 5, 6, 7 or 8 tuning drawer adjust signal generator until voltage at the detector is 3 volts.
- Increase output of signal generator by 6db, increase frequency and note frequency at which the detector output returns to 3 volts.
- Now decrease the frequency to the lower side of the receiver response curve and note the frequency at which the detector output returns to 3 volts.
- 6. Subtract the two frequencies noted in steps 4 and 5 to obtain the 6db bandwidth of the receiver. Should be 5KC (-10%) minimum. See Fig. 2A for BW of other FFRD's.
- A test sheet is to be filled out for each tuning drawer and signed by the tester.

DATE 8/30/62 SHEET 13 OF 16		TMC SPECIFICATION NO. S - 713	D
NP COMPILED	CHECKED	TITLE: FFR TEST PROCEDURE (F.A.A.)	
APPROVED		Page Issue A B	

ALIGNMENT CHART

FIG. 2

BAND	osc.	MIX.	R.F.	ANT.
1	50 Kc	50 Kc	50 Kc	50 Kc
	100 Kc	100 Kc	1 00 Kc	100 Kc
2	100 Kc	100 Kc	100 Kc	100 Kc
	200 Kc	200 Kc	200 Kc	200 Kc
3	200 Kc	200 Kc	200 Kc	200 Kc
	400 Kc	400 Kc	400 Kc	400 Kc
3 M	485 Kc	485 Kc	485 Kc	485 Kc
	515 Kc	515 Kc	515 Kc	515 Kc
5	2.0 Mc	2.1 Mc	2.1 Mc	2.1 Mc
	4.0 Mc	4.0 Mc	4.0 Mc	4.0 Mc
6	4.0 Mc	4.25 Mc	4.25 Mc	4.25 Mc
	8.0 Mc	8.0 Mc	8.0 Mc	8.0 Mc
7	8.0 Mc	8.5 Mc	8.5 Mc	8.5 Mc
	16.0 Mc	16.0 Mc	16.0 Mc	16.0 Mc
8	16.0 Mc	16.0 Mc	16.0 Mc	16.0 Mc
	31.0 Mc	31.0 Mc	31.0 Mc	31.0 Mc

NORMAL SELECTIVITY FIG. 2A (Approximate Values)

BAND	FREQ.	6DB POINTS
1	50 KC	2 KC
_	100	4
2	100	2.5
	200	4.3
3	200	4.1
	400	4.8
3M	500	3.8
5,6,	2 to 32MC	5
7,8		

NOTE:

On the low freq. heads (FFRD 1,2 & 3) the BW control provides 4 positions of selectivity, one normal as indicated and three narrow positions of 1.3KC, .5KC and .3KC.

TMC SPECIFICATION NO. S - 713

NP COMPILED CHECKED TITLE: FFR TEST PROCEDURE (F.A.A.)

Page Issue A B C

FIG. 3

BAND	TOTAL FREQ. SHIFT / Mc	FREQ.	TOTAL SHIFT
1	Min shift of 4 Kc throughout the band	50 Kc 75 Kc 100 Kc	4.0 Kc 4.0 Kc 4.0 Kc
2	11	100 Kc 150 Kc 200 Kc	4.0 Kc 4.0 Kc 4.0 Kc
3	* ***	200 Kc 300 Kc 400 Kc	4.0 Kc 4.0 Kc 4.0 Kc
3 <u>M</u>	Min shift of 6 Kc throughout the band	485 Kc 515 Kc	6.0 Kc 6.0 Kc
5A	4 Kc/Mc	2 Mc 3 Mc 4 Mc	8 K c 12 Kc 16 Kc
6 A	4 Kc/Mc	4 Mc 6 Mc 8 Mc	16 Kc 24 Kc 32 Kc
7A	3 Kc/Mc	8 Mc 12 Mc 16 Mc	24 Kc 36 Kc 48 Kc
8A	Min shift of 32 Kc throughout the band	16 Mc 24 Mc 31 Mc	32 Kc 32 Kc 32 Kc
7 B	Min shift of 8 Kc throughout the band	8 Mc 12 Mc 16 Mc	11.2 K 16.7 K 22.4 K
8B	Min shift of 8 Kc through the band	16 Mc 24 Mc 31 Mc	16 Kc 24 Kc 32 Kc

DATE 8/30/62 SHEET 16 OF 16		ТМС	SPEC	IFICATION N	IO. S - 713		
NP COMPILED	ON F.			AWER TEST SHEET		_	
APPR	OVED	Page I	ssue A B				
MODEL FFR	RD						
SERIAL NO). <u></u>	5	OW Mcs.	MID FREQ. Mcs.	HIGH FREQ. Mcs.		
MFG. NO	NOISE RATI		uv	uv	uv		
IMAGE RAT			db	db	db		
IMAGE ITA	IMAGE RATIO						
SENSITIVITY AT 10 db SIGNAL TO NOISE RATIO.			úv	uv	uv		
REACTANCI	REACTANCE TUBE SHIFT		Кc	Кс	Кс		
OSC. OUTPUT (J-102)			v.	v.	v.		
A.V.C. INPUT 1 uv 10,000 uv OUTPUT db db							
XTAL OSC. OUTPUT (J-102)VOLTS HFO INPUT							
SELECTIVITYKC.							
	TION						
]	BY:			,			
]	DATE:						

DATE 8/30 SHEET 15		TMC SPEC	IFICATION	I NO. S - 713	D
NP COMPILED	CHECKED	TITLE: MODEL FFR	TEST SHEET (F.A.A.)	
APPR	OVED	Page Issue A B			
	SED T	N. NO		MFG. NO.	
		AL NO.			
		TIVITY: INPUT			
		T FOR 115 uv			
		JT (J-100)		<u> </u>	
	AUDIO OUII	PUTS: 600 OHMS			
		8 OHMS_			
	*******	PHONES		<u> </u>	
		т			
} }		CTA I			
<u> </u>	B.F.U. ; 2	WAR LARLE			
		VAR IABLE		Voc	
		ACTANCE TUBE SHIFT		KCS.	
	B.F.O. 001	TPUT (J104): XTAL			
		VAR IABLE			
		PUT			
		ITER			
		TUTTY ADD			
	I.F. SELECT	IVITY 6DB			
	TESTED BY			_•	
				-•	

		SHEET		THE TECHNICAL MATERIEL CORP. MAMARONECK NEW YORK LIST	ST NO.
DATE	REV.	SHEET	EMN #	DESCRIPTION	APP.
5/8/63	A	10, 11		Revised per EMN #8983	16
8/30/63	В	>	9878	Revised Sheets 3,4,5, 6,9 per EMN	16
6/6/66			16319	Revised per EMN	
12/16/6		10		Revised per EMN	(32)
			`		
					•
					· · · · · · · · · · · · · · · · · · ·
					l .